Формула аннуитетного платежа: особенности расчета

67

При нехватке личных средств или желании приобрести дорогостоящую покупку обращаются в банки и другие финансовые организации за получением кредитов. Кроме основной суммы задолженности, клиент будет выплачивать процентную ставку согласно заключённому договору. Поэтому важно подобрать заём с удобным способом выплаты регулярных взносов. А также необходимо знать для расчета формулу аннуитетного платежа.

Погашение кредита

С каждым годом общая сумма задолженности всего населения Российской Федерации увеличивается, несмотря на рост процентов и ужесточение требований к клиентам. Погасить кредит можно двумя способами — аннуитетными или дифференцированными платежами. При выборе этого параметра обращают внимание на размер процентной ставки, именно от неё зависит конечная сумма долга. Аннуитетные выплаты подразумевают погашение переплаты в начале периода, а затем тела кредита. Дифференцированные платежи действуют наоборот: основной долг выплачивается равномерно в течение всего времени кредитования.

Более выгодным для клиента считается именно последний вариант, так как сразу возвращается и сам заём, и проценты по нему. Ставка каждый месяц пересчитывается, благодаря чему регулярные взносы уменьшаются к концу кредитования. Но банки заинтересованы в том, чтобы получить максимальную выгоду с каждой заимствованной суммы. Поэтому практически все кредиты оформляются для выплаты аннуитетными взносами.

Аннуитетные платежи

Погашение кредита

При дифференцированных выплатах клиент сразу погашает тело задолженности. Со временем сумма кредита уменьшается, что тянет за собой снижение процентной ставки и суммы регулярных платежей. Но это не подходит финансовым компаниям, которым необходимо получить прибыль. Поэтому назначают аннуитетные взносы.

Этот вид кредита предполагает погашение равными частями в течение всего периода, что позволяет клиенту планировать свои расходы. Удобно каждый месяц вносить небольшую сумму, не лишаясь большей части регулярного дохода. Дифференцированные выплаты не всем подходят, так как они требуют в начале периода возврата значительной части кредита.

Есть ещё причины, по которым банки выбирают именно аннуитетный платёж:

  • сначала погашаются проценты по кредиту;
  • исчезает риск невозврата заимствованных средств;
  • размер регулярных взносов не изменяется на протяжении всего периода.

Большая часть первых платежей идёт на погашение кредитной ставки. Так банки могут обезопасить себя от потери прибыли.

Последние платежи в периоде закрывают именно тело задолженности. Полная стоимость займа при таких расчётах будет выше, чем при использовании дифференцированной системы.

Формула расчёта

Рассчитать регулярный платёж, размер процентной ставки и полную сумму долга должны банковские сотрудники, которые занимаются оформлением кредита. Взносы разбиваются на две части:

  • первая погашает процентную ставку, она уменьшается со временем;
  • вторая закрывает тело кредита, она постепенно увеличивается.

Аннуитетные платежи

  • первая погашает процентную ставку, она уменьшается со временем;
  • вторая закрывает тело кредита, она постепенно увеличивается.

Для самостоятельного составления графиков используют формулу расчёта аннуитетных платежей по кредиту. Узнать необходимые суммы тяжело, лучше воспользоваться калькулятором на сайтах банков. Программа использует формулу с параметрами, которые незнакомы обычным клиентам, но о них знают работники финансовых компаний. Она выглядит так: Мп = Сз х (Мпс/(1-(1+Мпс)) в степени (-Ск)), где:

  • Мп — это месячный взнос;
  • множитель Сз — вся сумма заимствованных средств;
  • Мпс — месячная процентная ставка;
  • Ск — срок кредитования, указан в месяцах.

Правильно посчитать можно только с помощью калькулятора, в противном случае будут допущены ошибки. Лучше рассмотреть особенности формулы на примере. Для этого необходимо знать три параметра кредита, например:

  • сумма — 40 000 рублей;
  • процент — 22% годовых;
  • период кредитования — 2 года или 24 месяца.

Формула расчёта аннуитетного платежа

  • сумма — 40 000 рублей;
  • процент — 22% годовых;
  • период кредитования — 2 года или 24 месяца.

Сначала рассчитывают ставку на месяц: 22/12/100 = 0,0183. Затем подставляют все показатели в стандартную формулу: 40 000 х (0,0183/(1−1 (1+0,0183)) возведённое в степень (-24)). В результате получится определённая сумма — 2075,13 р. Это регулярный платёж, который должен будет вносить клиент на счёт банка.

После этого можно найти размер переплаты. Для этого ежемесячный взнос умножают на срок кредитования: 2075,13 х 24 = 49 803. Дальше клиент узнаёт переплату: 49 803 — 40 000 = 9 803. То есть при оформлении кредита размером 40 тыс. р. на два года под годовую ставку 22% заёмщик переплатит 9 803 рубля.

Работа в Excel

Так как самостоятельно проводить расчёты тяжело, то лучше использовать Excel. Формула аннуитетного платежа в программе описана специальной функцией ПЛТ. Достаточно открыть документ на новом листе, создать пустую таблицу и в любой ячейке вписать формулу: =ПЛТ (процентная ставка/количество месяцев в году; срок кредитования; сумма займа).

Обязательно перед функцией проставляют знак равенства, так как без него программа воспримет введённые данные, как простой текст, и не станет проводить какие-либо расчёты.

Все параметры вводят в строго определённом порядке, разделяя их точкой с запятой. Если не соблюдать эти правила, то Эксель во время вычислений выдаст некоторые ошибки. После расчётов программа покажет результат, равный числу, полученному при самостоятельном выведении формулы. Кроме расчётов, клиент может отдельно построить в Excel график аннуитетных платежей.

График погашения кредита

Программа позволить заёмщику быстро узнать размеры всех затрат, связанных с оформлением и выплатой кредита.

Но сумма платежа рассчитывается не только в Excel. На сайтах разных банков и финансовых компаний есть специальные кредитные калькуляторы. В них нужно ввести все исходные данные по займу и провести операцию вычисления. Автоматическая программа выдаст в результате общий размер переплаты, проценты за период кредитования, ежемесячные платежи и рассчитает досрочное погашение.

Процентная ставка

Клиенту желательно самому подсчитать размер процентов, которые он выплатит банку. Хотя вся информация указывается в договоре, лучше перепроверить данные. Для этого также используют специальную формулу. Она легче той, которая позволяет узнать сумму переплаты. В случае аннуитетных выплат достаточно умножить оставшуюся сумму задолженности на ежемесячную ставку.

Плата по кредиту

Если брать предыдущие данные по кредиту, то регулярный платёж составляет 2075 рублей, при первой выплате эти средства переходят на погашение процентов. Клиент может применить такую формулу: Сз х Мпс, где Сз — это задолженность, а Мпс — месячная ставка. Так как взнос будет первый, то изначально сумма кредита составит 40 000 рублей. Рассчитывается по формуле сумма, которая отчисляется в счёт погашения ставки: 40 000 х 0,0183 = 723. Во время второй выплаты тело кредита уменьшается на это число: 38 657 х 0,0183 = 707 (второй платёж).

С помощью этих данных клиент легко узнаёт, какая часть выплат погашает ставку, а какая — тело задолженности. Для этого от размера ежемесячного платежа отнимают число, полученное в результате расчётов. В начале периода средства будут максимально покрывать проценты, а в конце — сам кредит.

При этом банк получает ставку с большей суммы, чем при дифференцированной системе. Переплата по кредиту с аннуитетными выплатами будет больше, так как процесс погашения всего долга более растянут. Но при этом заёмщик может контролировать размеры взносов и по возможности увеличивать их, сокращая свои расходы.

Преимущества выплат

У аннуитетной системы есть свои преимущества, поэтому отказываться от неё не стоит. Сильные стороны подобной системы:

  • небольшие ежемесячные выплаты;
  • снижение финансовой нагрузки;
  • быстрая выплата процентов.

Процентная ставка по кредиту

  • небольшие ежемесячные выплаты;
  • снижение финансовой нагрузки;
  • быстрая выплата процентов.

Обычно за оформлением такого кредита обращаются физические лица, доходы которых не позволяют каждый месяц выплачивать значительные суммы или сразу отдавать крупный первый взнос. Небольшие регулярные расходы позволяют сократить финансовую нагрузку на семейный бюджет. В первые месяцы клиент отдаёт банку проценты, уменьшая их размер к концу периода.

Но в то же время заёмщик существенно переплачивает, ведь срок кредитования длительный, на каждый месяц насчитываются проценты. В среднем окончательный размер задолженности превысит тело кредита на 10−15 тысяч рублей. Более привлекательна дифференцированная система, но в этом случае необходимо сразу выплачивать большие взносы. Они в несколько раз превышают платежи по другой схеме.

Ссылка на основную публикацию